Extensions 1→N→G→Q→1 with N=C4 and Q=C23

Direct product G=N×Q with N=C4 and Q=C23
dρLabelID
C23×C432C2^3xC432,45

Semidirect products G=N:Q with N=C4 and Q=C23
extensionφ:Q→Aut NdρLabelID
C4⋊C23 = C22×D4φ: C23/C22C2 ⊆ Aut C416C4:C2^332,46

Non-split extensions G=N.Q with N=C4 and Q=C23
extensionφ:Q→Aut NdρLabelID
C4.1C23 = C2×D8φ: C23/C22C2 ⊆ Aut C416C4.1C2^332,39
C4.2C23 = C2×SD16φ: C23/C22C2 ⊆ Aut C416C4.2C2^332,40
C4.3C23 = C2×Q16φ: C23/C22C2 ⊆ Aut C432C4.3C2^332,41
C4.4C23 = C4○D8φ: C23/C22C2 ⊆ Aut C4162C4.4C2^332,42
C4.5C23 = C8⋊C22φ: C23/C22C2 ⊆ Aut C484+C4.5C2^332,43
C4.6C23 = C8.C22φ: C23/C22C2 ⊆ Aut C4164-C4.6C2^332,44
C4.7C23 = C22×Q8φ: C23/C22C2 ⊆ Aut C432C4.7C2^332,47
C4.8C23 = C2×C4○D4φ: C23/C22C2 ⊆ Aut C416C4.8C2^332,48
C4.9C23 = 2+ 1+4φ: C23/C22C2 ⊆ Aut C484+C4.9C2^332,49
C4.10C23 = 2- 1+4φ: C23/C22C2 ⊆ Aut C4164-C4.10C2^332,50
C4.11C23 = C2×M4(2)central extension (φ=1)16C4.11C2^332,37
C4.12C23 = C8○D4central extension (φ=1)162C4.12C2^332,38

׿
×
𝔽