Direct product G=NxQ with N=C4 and Q=C23
Semidirect products G=N:Q with N=C4 and Q=C23
Non-split extensions G=N.Q with N=C4 and Q=C23
extension | φ:Q→Aut N | d | ρ | Label | ID |
C4.1C23 = C2xD8 | φ: C23/C22 → C2 ⊆ Aut C4 | 16 | | C4.1C2^3 | 32,39 |
C4.2C23 = C2xSD16 | φ: C23/C22 → C2 ⊆ Aut C4 | 16 | | C4.2C2^3 | 32,40 |
C4.3C23 = C2xQ16 | φ: C23/C22 → C2 ⊆ Aut C4 | 32 | | C4.3C2^3 | 32,41 |
C4.4C23 = C4oD8 | φ: C23/C22 → C2 ⊆ Aut C4 | 16 | 2 | C4.4C2^3 | 32,42 |
C4.5C23 = C8:C22 | φ: C23/C22 → C2 ⊆ Aut C4 | 8 | 4+ | C4.5C2^3 | 32,43 |
C4.6C23 = C8.C22 | φ: C23/C22 → C2 ⊆ Aut C4 | 16 | 4- | C4.6C2^3 | 32,44 |
C4.7C23 = C22xQ8 | φ: C23/C22 → C2 ⊆ Aut C4 | 32 | | C4.7C2^3 | 32,47 |
C4.8C23 = C2xC4oD4 | φ: C23/C22 → C2 ⊆ Aut C4 | 16 | | C4.8C2^3 | 32,48 |
C4.9C23 = 2+ 1+4 | φ: C23/C22 → C2 ⊆ Aut C4 | 8 | 4+ | C4.9C2^3 | 32,49 |
C4.10C23 = 2- 1+4 | φ: C23/C22 → C2 ⊆ Aut C4 | 16 | 4- | C4.10C2^3 | 32,50 |
C4.11C23 = C2xM4(2) | central extension (φ=1) | 16 | | C4.11C2^3 | 32,37 |
C4.12C23 = C8oD4 | central extension (φ=1) | 16 | 2 | C4.12C2^3 | 32,38 |
x
:
Z
F
o
wr
Q
<